This is a lightly-edited excerpt from a post on my long-defunct personal blog. Careful readers will note applications to engineering leadership, mentoring junior researchers, and public policy, among other domains.
When I was in the sixth grade, I entered the school science fair. I wrote a BASIC program to calculate what lengths of steel conduit would vibrate at certain frequencies and used its output to build an equal-tempered glockenspiel.1 Across the aisle from me was a poster for Pyramid Power, which is perhaps the greatest science fair project I’ve ever seen.
The greatness of this project started with an elaborate hand-drawn logo, which could have passed for that of a rock band with ample pinch harmonics and complicated hair-care protocols had it been etched on a desk or inked on the rear panel of a denim jacket. Beyond the exceptional logo, the poster contained all of the typical elementary-school science fair details: hypothesis, experimental method, equipment, results, and conclusion. The hypothesis was simple and implied the necessary equipment: if one built a pyramid out of cardboard and covered it with electrical tape, then one could run a wire from this pyramid to the soil of a potted plant. The plant would then flourish, the young scientist hypothesized, thanks to Pyramid Power.2
To demonstrate Pyramid Power, the student had executed a controlled experiment by raising two plants in nearly identical conditions, except that one plant would have the wire in its soil and benefit from Pyramid Power, while the control would not. Unfortunately, the experiment ended unexpectedly: the control group plant had flourished, but the experimental plant had withered and died almost immediately. However, as the researcher concluded, this apparently-confounding finding did not challenge the validity of the Pyramid Power hypothesis.
“Clearly, we needed a bigger pyramid.”