You probably already know that if you’re modeling multiple independent phenomena in a repeatable simulation, you want multiple independent pseudorandom number generators. But you may be surprised by a consequence of following this approach if you’re using the excellent probability distributions supplied by the scipy.stats package. Read on to learn what the problem is and how to solve it!

Two ways to sample

Say you’re simulating the operations of a large retailer and have modeled the number of customer arrivals in a particular timespan with a Poisson distribution with some parameter λ. There are at least two ways to get a dozen samples from that distribution using SciPy.

We could supply the distribution parameters and a random state in each sampling call:

import scipy.stats
import numpy as np
seed = 0x00c0ffee

mean = 5
rs = np.random.RandomState(seed)
samples = scipy.stats.poisson.rvs(mean, size=12, random_state=rs)

or we could use a distribution object, which allows us to specify the parameters (including a random seed) once:

import scipy.stats

mean = 5
seed = 0x00c0ffee

distribution = scipy.stats.poisson(mean)
distribution.random_state = seed

samples = distribution.rvs(size=12)

In the first example, we have twelve samples from a Poisson distribution with a λ of mean; we specify the shape parameter when we draw from the distribution. In the second example, we’re creating a distribution object with a fixed λ, backed by a private pseudorandom number generator, seeded with a supplied value.

Interfaces and implementations

The second approach has two advantages: Firstly, we have an object with fixed distribution parameters (depending on the distribution, there can be several, including location and scale), so we don’t have to worry about tracking these every time we want to sample from this distribution. Secondly, we have a way to make sampling from this distribution deterministic by seeding it but without passing the same RandomState for each independent stream of values.

The disadvantage of the second approach only becomes obvious when we have many distribution objects in a single program. To get a hint for what goes wrong, let’s run a little experiment. The following two functions, which simulate running a certain number of steps of a simulation that depends on a certain number of independent actors, should have identical behavior.

def experiment_one(agents, steps):
    def mkpoisson(l,seed):
        p = scipy.stats.poisson(l)
        p.random_state = seed
        return p

    seeds = np.random.randint(1<<32, size=agents)
    streams = [mkpoisson(12, seed) for seed in seeds]
    for p in streams:
        p.rvs(steps)

def experiment_two(agents, steps):
    seeds = np.random.randint(1<<32, size=agents)
    states = [np.random.RandomState(seed) for seed in seeds]
    for rs in states:
        scipy.stats.poisson.rvs(12, size=steps, random_state=rs)
        

If we run both of these functions, though, we’ll see how they behave differently: running experiment_one for a thousand steps with ten thousand agents takes roughly 14 seconds on my laptop, but running experiment_two with the same parameters takes roughly 3¼ seconds. (You can try it for yourself locally or on binder.)

Explaining the performance difference

Why is the less-convenient API so much faster? To see why, let’s profile the first function:

import cProfile
import pstats
from pstats import SortKey

cProfile.run("experiment_one(10000,1000)", sort=SortKey.TIME)

This will show us the top function calls by exclusive time (i.e., not including time spent in callees). In my environment, the top function is docformat in doccer.py, which is called twice for each agent. In terms of exclusive time, it accounts for roughly 20% of the total execution of the experiment; in terms of inclusive time (i.e., including callees), it accounts for over half the time spent in the experiment.

What does docformat do? It reformats function docstrings and performs textual substitution on them. This makes sense in one context – building up a library of distribution classes from abstract bases and filling in documentation for all of the subclasses. In the context of creating an individual instance of a distribution object with particular parameters, it’s an interesting design decision indeed, especially since we’d be unlikely to examine the documentation for thousands of distribution objects that are internal to a simulation. (SciPy refers to this as “freezing” a distribution. The documentation briefly mentions that it’s convenient to fix the shape and parameters of a distribution instance but doesn’t mention the performance impact, although searching StackOverflow and GitHub shows that others have been bitten by this issue as well.)

Some solutions

Fortunately, there are a couple of ways to work around this problem. We could simply write code that looks like experiment_two, passing distribution parameters and a stateful random number generator to each function. This would be fast but clunky.

We could also sample from a uniform distribution and map those samples to samples of our target distribution by using the inverse cumulative distribution function (or percentage point function) of the target distribution, like this example that takes ten samples from a Poisson distribution:

prng = np.random.RandomState(seed=0x00c0ffee)
scipy.stats.poisson.ppf(prng.uniform(size=10), mu=12)

(Note that SciPy calls the λ parameter mu, presumably to avoid conflict with the Python keyword lambda.)

We can make either of these approaches somewhat cleaner by wrapping them in a Python generator, like this:

def mkpoisson(l, prng):
    while True:
        yield from scipy.stats.poisson.ppf(prng.uniform(size=1024), mu=l)

We can then use the iterators returned by this generator to repeatedly sample from the distribution:

p = mkpoisson(12, np.random.RandomState(seed=0x00c0ffee))

for i in range(10):
    print(p.next())

Postscript and sidebar

Of course, if we want a deterministic simulation involving a truly large number of independent phenomena, the properties of the pseudorandom number generation algorithm we use can become important. The RandomState class from NumPy, like the pseudorandom number generator in the Python standard library, uses the Mersenne Twister, which has an extremely long period but requires roughly 2kb of internal state, which you can inspect for yourself:

rs = np.random.RandomState(seed=0x00c0ffee)
rs.get_state()

The new NumPy RNG policy, which was implemented in NumPy 1.17, features a Generator class backed by an underlying source of bit-level randomness.1 The default bit-level source is Melissa O’Neill’s PCG, which requires only two 128-bit integers of state and has better statistical properties than the Mersenne Twister. Other approaches to bit-level generation may be worth investigating in the future due to the possibility of better performance.

You can use the new PCG implementation like this:

prng = np.random.default_rng(seed=0x00c0ffee)
scipy.stats.poisson.ppf(prng.uniform(size=10), mu=12)

If you’re maintaining a lot of Python functions that depend on having pseudorandom number generation — like in a discrete-event simulation — you probably want different random states for each consumer of randomness. As a concrete example, if you’re simulating the behavior of multiple users in a store and their arrival times and basket sizes can be modeled by certain probability distributions, you probably want a separate source of randomness for each simulated user.

Using a global generator, like the one backing the module methods in numpy.random or Python’s random, makes it difficult to seed your simulation appropriately and can also introduce implicit dependencies between the global parameters of the simulation (e.g., how many users are involved in a run of the simulation) and the local behavior of any particular user.

Once you’ve decided you need multiple sources of randomness, you’ll probably have a lot of code that looks something like this:

import random
import numpy as np

def somefunc(seed=None):
  if seed is None:
    seed = random.randrange(1 << 32)
    
  prng = np.random.RandomState(seed)

  while True:
    step_result = None
    
    # use prng to do something interesting 
    # as part of the simulation and assign 
    # it to step_result (omitted here) ...
    
    yield step_result

Initializing random number generators at the beginning of each function is not only repetitive, it’s also ugly and error-prone. The aesthetic and moral costs of this sort of boilerplate were weighing heavily on my conscience while I was writing a simulation earlier this week, but an easy solution lifted my spirits.

Python decorators are a natural way to generate a wrapper for our simulation functions that can automatically initialize a pseudorandom number generator if a seed is supplied (or create a seed if one isn’t). Here’s an example of how you could use a decorator in this way:

def makeprng(func):
  def call_with_prng(*args, prng=None, seed=None, **kwargs):
    if prng is None:
      if seed is None:
        seed = random.randrange(1 << 32)
   
      prng = np.random.RandomState(seed)
    return func(*args, prng=prng, seed=seed, **kwargs)
    
  return call_with_prng

@makeprng
def somefunc(seed=None, prng=None):

  while True:
    step_result = None
    
    # use prng to do something interesting 
    # as part of the simulation and assign 
    # it to step_result (omitted here) ...
    
    yield step_result

With the @makeprng annotation, somefunc will be replaced with the output of makeprng(somefunc), which is a function that generates a prng and passes it to somefunc before calling it. So if you invoke somefunc(seed=1234), it’ll construct a pseudorandom number generator seeded with 1234. If you invoke somefunc(), it’ll construct a pseudorandom number generator with an arbitrary seed.

Decorators are a convenient, low-overhead way to provide default values that must be constructed on demand for function parameters — and they make code that needs to create multiple streams of pseudorandom numbers much less painful to write and maintain.

I had a lot of fun presenting a tutorial at Strata Data NYC with my teammate Sophie Watson yesterday. In just over three hours, we covered a variety of hash-based data structures for answering interesting queries about large data sets or streams. These structures all have the following properties:

  • they’re incremental, meaning that you can update a summary of a stream by adding a single observation to it,
  • they’re parallel, meaning that you can combine a summary of A and a summary of B to get a summary of the combination of A and B.
  • they’re scalable, meaning that it’s possible to summarize an arbitrary number of observations in a fixed-size structure.

I’ve been interested in these sorts of structures for a while and it was great to have a chance to develop a tutorial covering the magic of hashing and some fun applications like Sophie’s recent work on using MinHash for recommendation engines.

If you’re interested in the tutorial, you can run through our notebooks at your own pace.

In my last post, I showed some applications of source-to-image workflows for data scientists. In this post, I’ll show another: automatically generating a model serving microservice from a git repository containing a Jupyter notebook that trains a model. The prototype s2i builder I’ll be describing is available here as source or here as an image (check the blog-201810 tag).

Basic constraints

Obviously, practitioners can create notebooks that depend on any combination of packages or data, and that require any sort of oddball execution pattern you can imagine. For the purposes of this prototype, we’re going to be (somewhat) opinionated and impose a few requirements on the notebook:

  1. The notebook must work properly if all the cells execute in order.
  2. One of the notebook cells will declare the library dependencies for the notebook as a list of name, version lists called requirements, e.g., requirements = [['numpy', '1.10']]
  3. The notebook must declare a function called predictor, which will return the result of scoring the model on a provided sample.
  4. The notebook may declare a function called validator, which takes a sample and will return True if the sample provided is of the correct type and False otherwise. The generated service will use this to check if a sample has the right shape before scoring it. (If no validator is provided, the generated service will do no error-checking on arguments.)

A running example

Consider a simple example notebook. This notebook has requirements specified:

requirements = [["numpy", "1.15"], ["scikit-learn", "0.19.2"], ["scipy", "1.0.1"]]

It also trains a model (in this case, simply optimizing 7 cluster centers for random data):

import numpy as np
from sklearn.cluster import KMeans
DIMENSIONS = 2
randos = np.random.random((40000,DIMENSIONS))
kmodel = KMeans(n_clusters=7).fit(randos)

Finally, the notebook also specifies predictor and validator methods. (Note that the validator method is particularly optimistic – you’d want to do something more robust in production.)

def predictor(x):
    return kmodel.predict([x])[0]

def validator(x):
    return len(x) == DIMENSIONS

What the builder does

Our goal with a source-to-image builder is to turn this (indeed, any notebook satisfying the constraints mentioned above) into a microservice automatically. This service will run a basic application skeleton that exposes the model trained by the notebook on a REST endpoint. Here’s a high-level overview of how my prototype builder accomplishes this:

  1. It preprocesses the input notebook twice, once to generate a script that produces a requirements file from the requirements variable in the notebook and once to generate a script that produces a serialized model from the contents of the notebook,
  2. It runs the first script, generating a requirements.txt file, which it then uses to install the dependencies of the notebook and the model service in a new virtual environment (which the model service will ultimately run under), and
  3. It runs the second script, which executes every cell of the notebook in order and then captures and serializes the predictor and validator functions to a file.

The model service itself is a very simple Flask application that runs in the virtual Python environment created from the notebook’s requirements and reads the serialized model generated after executing the notebook. In the case of our running example, it would take a JSON array POSTed to /predict and return the number of the closest cluster center.

Future work and improvements

The goal of the prototype service is to show that it is possible to automatically convert notebooks that train predictive models to services that expose those models to clients. There are several ways in which the prototype could be improved:

Deploying a more robust service: currently, the model is wrapped in a simple Flask application running in a standalone (or development) server. Wrapping a model in a Flask application is essentially a running joke in the machine learning community because it’s obviously imperfect but it’s ubiquitous in any case. While Flask itself offers an attractive set of tradeoffs for developing microservices, the Flask development server is not appropriate for production deployments; other options would be better.

Serving a single prediction at once with a HTTP roundtrip and JSON serialization may not meet the latency or throughput requirements of the most demanding intelligent applications. Providing multiple service backends can address this problem: a more sophisticated builder could use the same source notebook to generate several services, e.g., a batch scoring endpoint, a service that consumes samples from a messaging bus and writes predictions to another, or even a service that delivers a signed, serialized model for direct execution within another application component.

The current prototype builder image is built up from the Fedora 27 source-to-image base image; on this base, it then installs Python and a bunch of packages to make it possible to execute Jupyter notebooks. The generated service image also installs its extra requirements in a virtual environment, but it retains some baggage from the builder image.1 A multi-stage build would make it possible to jettison dependencies only necessary for actually executing the notebook and building the image (in particular, Jupyter itself) while retaining only those dependencies necessary to actually execute the model.

Finally, a multi-stage build would enable cleverer dependency handling. The requirements to run any notebook are a subset of the requirements to run a particular notebook from start to finish, but the requirements to evaluate a model scoring function or sample validation function likely do not include all of the packages necessary to run the whole notebook (or even all of the packages necessary to run any notebook at all). By identifying only the dependencies necessary for model serving – perhaps even automatically – the serving image can be smaller and simpler.


  1. The virtual environment is necessary so that the builder image can run without special privileges – that is, it need only write to the application directory to update the virtual environment. If we needed to update system packages, we’d need to run the builder image as root

I’m excited to be speaking at Strata Data in New York this Wednesday afternoon! My talk introduces the benefits of Linux containers and container application platforms for data science workflows.

There are a lot of introductory tutorials about Linux containers, some of which are even ostensibly targeted to data scientists. However, most of these assume that readers in general (and data scientists in particular) really want to get their hands dirty right away packaging software in containers: “here’s a container recipe, here’s a YAML file, now change these to meet your requirements and you’re ready to go.”

I’ve spent a lot of time packaging software and, while I’m not bad at it, there are definitely things I’d rather be doing. Unfortunately, the ubiquity of container tooling has democratized software packaging without making the hard parts any easier; in the worst case, container tooling just makes it really easy to produce bad or unsafe binary packages. So, instead of showing my audience how to make container recipes, I wanted to focus on a few high-level tools that can enable anyone to enjoy the benefits of containers without having to become a packaging expert.

In the remainder of this post, I’ll share some more information about the tools and communities I mentioned.

Binder

The first tool I discussed is Binder, which is a service that takes a link to a Git repository with iPython notebooks and a Python requirements file and will build and start up a Jupyter server in a container to serve those notebooks. The example I showed was [this notebook repository] (https://github.com/willb/probabilistic-structures/) from my DevConf.us talk, which you can run under Binder by clicking here. Finally, like all of the tools I’ll mention, Binder is open-source if you want to run your own or contribute.

source-to-image

If you want a little more flexibility to build container images from source repositories without dealing with the hassles of packaging, the source-to-image tool developed by the OpenShift team at Red Hat is a great place to get started. The source-to-image tooling lets developers or data scientists focus on code while leaving the details of building container images to a packaging expert who develops a particular builder image. In my talk, I showed how to use s2i to build the same notebook I’d served with Docker, using Graham Dumpleton’s excellent notebook s2i builder image and then deployed this image with OKD running on my laptop to get much the same result as I would with Binder; watch the embedded video to see what it looked like:

You aren’t restricted to reimplementing notebook serving with s2i, though; any time you want a repeatable way to create a container from a source repository is a candidate for a source-to-image build. Here are two especially cool examples:

It’s also possible to set up source-to-image builds to trigger automatically when your git repository is updated – check the OpenShift architecture documentation and the OpenShift developer documentation for more details.

radanalytics.io and Kubeflow

The radanalytics.io community is focused on enabling intelligent applications on Kubernetes and OpenShift. The community has produced a containerized distribution of Apache Spark, source-to-image builders (as mentioned above), container images for Jupyter notebooks, and TensorFlow training and serving containers, as well as a source-to-image builder to generate custom TensorFlow binaries optimized for any machine. If your work involves bridging the gap between prototypes and production, or if you work with a cross-functional team to build applications that depend on machine learning, check it out!

Kubeflow is a community effort to package a variety of machine learning libraries and environments for Kubernetes, so that data scientists can work against the same environments locally that their organizations will ultimately deploy in production. So far, the community has packaged JupyterHub, TensorFlow, Seldon, Katib, PyTorch, and other frameworks.

Both of these communities are extremely friendly to newcomers, so if you want to get started building tools to make it easier to use containers for data science or machine learning, they’re great places to start!

This is a lightly-edited excerpt from a post on my long-defunct personal blog. Careful readers will note applications to engineering leadership, mentoring junior researchers, and public policy, among other domains.

When I was in the sixth grade, I entered the school science fair. I wrote a BASIC program to calculate what lengths of steel conduit would vibrate at certain frequencies and used its output to build an equal-tempered glockenspiel.1 Across the aisle from me was a poster for Pyramid Power, which is perhaps the greatest science fair project I’ve ever seen.

The greatness of this project started with an elaborate hand-drawn logo, which could have passed for that of a rock band with ample pinch harmonics and complicated hair-care protocols had it been etched on a desk or inked on the rear panel of a denim jacket. Beyond the exceptional logo, the poster contained all of the typical elementary-school science fair details: hypothesis, experimental method, equipment, results, and conclusion. The hypothesis was simple and implied the necessary equipment: if one built a pyramid out of cardboard and covered it with electrical tape, then one could run a wire from this pyramid to the soil of a potted plant. The plant would then flourish, the young scientist hypothesized, thanks to Pyramid Power.2

To demonstrate Pyramid Power, the student had executed a controlled experiment by raising two plants in nearly identical conditions, except that one plant would have the wire in its soil and benefit from Pyramid Power, while the control would not. Unfortunately, the experiment ended unexpectedly: the control group plant had flourished, but the experimental plant had withered and died almost immediately. However, as the researcher concluded, this apparently-confounding finding did not challenge the validity of the Pyramid Power hypothesis.

“Clearly, we needed a bigger pyramid.”


  1. Someone probably should have told me that it wasn’t an “Engineering Fair.” 

  2. I don’t recall whether or not the poster proposed a mechanism for Pyramid Power

Greenspun’s tenth rule of programming states that

Any sufficiently complicated C or Fortran program contains an ad-hoc, informally-specified, bug-ridden, slow implementation of half of Common Lisp.

Expressive high-level languages with powerful runtimes are far more common now than they were in 1993, but the general insight behind Greenspun’s rule remains undeniable – lower-level environments may seem desirable because they’re unfettered by certain kinds of complexity and lack the (percieved) baggage of richer ones, but this baggage often turns out to be necessary to get real work done and winds up getting reinvented poorly.1

Linux containers present the illusion of a relatively baggage-free environment for software distribution, and it’s wonderful that people have built workflows to let you go from a commit passing CI to an immutable deployment. But the fantastic developer experience that container tooling offers has also inspired a lot of people to do unsafe things in production, because there’s effectively no barrier to entry; building containers essentially turns everyone into a Linux distribution vendor; and being a Linux distribution vendor is not a part of most people’s skill set.2

Even if we just consider security (and ignore issues of legality and stability, among others), there are many places that these ad-hoc distributions can go off the rails. Just think of how many Dockerfiles (or similar image recipes) do things like

  • running services as root,
  • pulling down random binaries or tarballs from the public internet,
  • building static binaries against an environment defined by an unvetted image downloaded from a public registry,
  • building static binaries without any machine-readable or human-auditable representation of their dependencies, or
  • relying on alternative C library implementations that are designed to save code size and are only ever deployed in containers.

I’ve had many conversations in the last five years in which someone has asserted that container tooling obviates other packaging mechanisms.3 But this assumes that the hard part of packaging, e.g., an RPM for Fedora is in using the Fedora release tooling to get binaries into an RPM-shaped container. The hard part, of course, is in satisfying the guidelines that the Fedora project has put in place to make it more likely that Fedora will be stable, secure, legal, and usable. Since the issue is not the shape of the package but rather what it contains, saying that you don’t need to know how to make, e.g., an RPM if you have containers misses the point: it’s like saying “I know how to encode an audio stream as an MP3 file, so I could have produced this MP3 of Palestrina’s ‘Sicut cervus.’4

Container tooling makes it very easy to produce ad-hoc systems software distributions that don’t offer any of the value of traditional systems software distributions but still have many of their potential liabilities. Indeed, one might say that any containerized software distribution of sufficient complexity includes an ad-hoc, informally-specified, bug-ridden, and probably legally dubious implementation of half of the Fedora packaging guidelines.

(I’ve been meaning to write this post for a while; thanks to Paul Snively for inspiring me to finally get it done!)


  1. There’s a corollary to Greenspun’s rule for distributed systems and Erlang, naturally. 

  2. Indeed, the concerns of distributing systems software aren’t even particularly obvious to people who haven’t spent time in this world. 

  3. This conversation has even happened with people who work in the business of making open-source software consumable and supportable (and should probably know better). 

  4. The analogy with Palestrina’s contrapuntal style, governed as it is by rules and constraints, is deliberate. 

This brief post is based on material that Erik and I didn’t have time to cover in our Spark+AI Summit talk; it will show you how to use Scala’s implicit parameter mechanism to work around an aspect of the RDD API that can make it difficult to write generic functions. This post will be especially useful for experienced Spark users who are relatively new to Scala.

If you’ve written reusable code that uses Spark’s RDD API, you might have run into headaches related to variance. The RDD is an invariant API, meaning that RDD[T] and RDD[U] are unrelated types if T and U are different types – even if there is a subtyping relation between T and U.

Let’s say you had a Scala trait and some concrete class extending that trait, like these:

trait HasUserId { val userid: Int }

case class Transaction(override val userid: Int, 
                       timestamp: Int, 
                       amount: Double) 
  extends HasUserId {} 

You might then want to write a function operating on an RDD of any type that is a subtype of your HasUserId trait, like this:

def badKeyByUserId(r: RDD[HasUserId]) = r.map(x => (x.userid, x))

Unfortunately, this code isn’t that useful, because RDDs are invariant. Let’s apply it to a concrete RDD of some type that is a subtype of HasUserId:

val xacts = spark.parallelize(Array(
  Transaction(1, 1, 1.0), 
  Transaction(2, 2, 1.0)
))

This will fail to compile due to the type mismatch: we’ve supplied an org.apache.spark.rdd.RDD[Transaction] but the function required an org.apache.spark.rdd.RDD[HasUserId]. Since there is no subtyping relation between these two, we cannot supply the former in place of the latter. We could explicitly cast our RDD or its elements and get our code to compile and run:

/* cast the collection all at once */
badKeyByUserId(xacts.asInstanceOf[RDD[HasUserId]])

/* or cast each element */
badKeyByUserId(xacts.map(x => x.asInstanceOf[HasUserId]))

Explicit casts are clunky, though, and they also cost us precision: once we’ve cast up to RDD[(Int, HasUserId)], we have no safe way to get back to an RDD[(Int, Transaction)].

A better approach is to use Scala’s generic types in conjunction with implicit parameters to write a generic function that only accepts RDDs of some concrete type that is a subtype of HasUserId, like this:

def keyByUserId[T: ClassTag](r: RDD[T])(implicit bid: T => HasUserId) = 
   r.map(x => (bid(x).userid, x))

Let’s walk through what’s happening here. When we invoke keyByUserId with an RDD of some type T, the Scala compiler will first make sure there is a function in scope mapping from T to HasUserId.1 Put another way, the implicit formal parameter imposes a constraint on T – if there is a function that supplies evidence that T satisfies the constraint, the code will compile. This function will exist for any concrete subtype of HasUserId. We’ll then use that function to get a HasUserId-typed reference for each element of the collection so we can safely access the userid field. We’ll not only be able to apply that function to an RDD of Transaction objects, but it will return a result with a specific type: RDD[(Int, Transaction)].

It’s worth noting that we could also define a conversion from instances of some type unrelated to HasUserId to instances of HasUserId, meaning we aren’t restricted by the subtyping relationship. You can see a similar approach in action in my explanation of implementing database-style type translation in Scala’s type system.

It should be clear that using generics in this way can capture most of what we’d like to capture with a covariant collection (that is, a collection C such that C[T] <: C[U] iff T <: U). However, the general technique is more powerful than simply simulating covariance: what we’re doing here is using Scala’s implicit resolution to implement typeclasses so we can support typesafe ad hoc polymorphism. To see an example of how this affords us additional flexibility, let’s look at a generic method operating on RDDs of numeric values:

def multiply[T: ClassTag](r: RDD[T], v: T)(implicit ev: Numeric[T]) =
  r.map(x => ev.times(x, v))

multiply(spark.parallelize(Array(1,2,3,4)),4).collect()
// => Array(4, 8, 12, 16)

multiply(spark.parallelize(Array(1.0,2.0,3.0,4.0)),4.0).collect()
// => Array(4.0, 8.0, 12.0, 16.0)

As you can see, the same multiply method works for integers and doubles; indeed, it will work on any of Scala’s numeric types as well as any type T for which you define an implicit instance of Numeric[T].

In conclusion, the RDD is invariant, but you can still do useful generic programming with it as long as you’re willing to use Scala’s implcit conversions.


  1. It is also possible to supply one explicitly, in case there are several possible options. We can use implicitly to simulate the Scala compiler’s implicit resolution, so we could invoke our function the way that the Scala compiler does like this: keyByUserId(xacts)(implicitly[Transaction => HasUserId]) 

It’s an honor to present at Red Hat Summit again this year! I’m giving a brief introduction to machine learning concepts for developers. Of course, one can’t do justice to such a broad topic in a forty-minute session, but I have some materials for people who’d like to experiment with some fundamental ML techniques on their own time.

These materials are all presented as Jupyter notebooks, which combine code, narrative explanations, and output. These notebooks mean that you can inspect code, run it, change it, and experiment with it. The main thing to know about Jupyter is that notebooks are made up of cells, and pressing shift+enter will run the cell you’re currently on and move to the next one. If you get stuck, you can go up to the “Kernel” menu, and select “Restart and clear output.”

First up, this notebook can be run directly in your browser through the mybinder.org service – it presents an introduction to the scalable analytic techniques I mentioned in the beginning of the session.

If you’d like to dive deeper into specific machine learning techniques, you’ll need to fire up OpenShift:

  • log in to an OpenShift cluster, or create a temporary one on your local machine with oc cluster up.
  • create a pod to serve some more example notebooks with oc new-app radanalyticsio/workshop-notebook -e JUPYTER_NOTEBOOK_PASSWORD=developer, and
  • expose a route to that pod with oc expose workshop-notebook.

When you visit the route for the Jupyter pod, you’ll need to log in. The password is developer. After you log in, you’ll be presented a with a list of notebook files. Here’s what each of them contain:

  • ml-basics.ipynb contains visual explanations and examples of clustering, classification, and regression using Apache Spark,
  • pyspark.ipynb introduces data engineering and data cleaning using Apache Spark and shows you how to train a natural language model on a data set from an open-source project,
  • var.ipynb shows you how to model data and run Monte Carlo simulations with Apache Spark using an example from the financial domain.

Finally, be sure to visit radanalytics.io to see examples of intelligent applications on OpenShift and strimzi.io to learn how to enable Apache Kafka on OpenShift.

You’re at the beginning of a really exciting journey! I hope these resources are helpful as you get started.

I’m thrilled to be in Brno for DevConf again! This year I’m speaking about structures and techniques for scalable data processing, and this post is a virtual handout for my talk.

  • Here’s a Jupyter notebook containing all of the code I discussed in the talk, complete with a few exercises and some links to other resources.
  • There are lots of implementations of these techniques that you can use in production. Apache Spark, for example, uses some of these structures to support library operations like aggregates in structured queries. Algebird provides scalable and parallel implementations of all of the techniques I discussed and it is especially nice if you’re an algebraically-inclined fan of functional programming (guilty as charged).
  • A very cool data structure that I didn’t have time to talk about is the t-digest, which calculates approximate cumulative distributions (so that you can take a stream of metric observations and ask, e.g., what’s the median latency, or the latency at the 99th percentile?) My friend Erik Erlandson has a really elegant scala implementation of the t-digest and has also given several great talks on the t-digest and some really clever applications for scalable cumulative distribution estimates. Start with this one.
  • radanalytics.io is a community effort to enable scalable data processing and intelligent applications on OpenShift, including tooling to manage compute resources in intelligent applications and a distribution of Apache Spark for OpenShift.

My slides are available here.